High frequency top-down junction-less silicon nanowire resonators.

نویسندگان

  • Alexandra Koumela
  • Sébastien Hentz
  • Denis Mercier
  • Cécilia Dupré
  • Eric Ollier
  • Philip X-L Feng
  • Stephen T Purcell
  • Laurent Duraffourg
چکیده

We report here the first realization of top-down silicon nanowires (SiNW) transduced by both junction-less field-effect transistor (FET) and the piezoresistive (PZR) effect. The suspended SiNWs are among the smallest top-down SiNWs reported to date, featuring widths down to ~20 nm. This has been achieved thanks to a 200 mm-wafer-scale, VLSI process fully amenable to monolithic CMOS co-integration. Thanks to the very small dimensions, the conductance of the silicon nanowire can be controlled by a nearby electrostatic gate. Both the junction-less FET and the previously demonstrated PZR transduction have been performed with the same SiNW. These self-transducing schemes have shown similar signal-to-background ratios, and the PZR transduction has exhibited a relatively higher output signal. Allan deviation (σA) of the same SiNW has been measured with both schemes, and we obtain σ(A) ~ 20 ppm for the FET detection and σ(A) ~ 3 ppm for the PZR detection at room temperature and low pressure. Orders of magnitude improvements are expected from tighter electrostatic control via changes in geometry and doping level, as well as from CMOS integration. The compact, simple topology of these elementary SiNW resonators opens up new paths towards ultra-dense arrays for gas and mass sensing, time keeping or logic switching systems on the SiNW-CMOS platform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Study and Analysis of Heterojunction Gate All Around Nanowire Tunneling Field Effect Transistor

In this paper, we have presented a heterojunction gate all around nanowiretunneling field effect transistor (GAA NW TFET) and have explained its characteristicsin details. The proposed device has been structured using Germanium for source regionand Silicon for channel and drain regions. Kane's band-to-band tunneling model hasbeen used to account for the amount of band-to...

متن کامل

Integration of NEMS resonators in a 65 nm CMOS technology

In this work we study the feasibility to obtain the smallest CMOS-NEMS resonator using a sub-100 nm CMOS technology. The NEMS resonators are defined in a top-down approach using the available layers of the 65 nm CMOS technology from ST Microelectronics. A combination of dry and wet etching is developed in order to release the NEMS in an in-house post-CMOS process. Two different NEMS resonators ...

متن کامل

Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...

متن کامل

Fabrication and characterization of axially doped silicon nanowire tunnel field-effect transistors.

Tunnel field-effect transistors were fabricated from axially doped silicon nanowire p-n junctions grown via the vapor-liquid-solid method. Following dry thermal oxidation to form a gate dielectric shell, the nanowires have a p-n-n(+) doping profile with an abrupt n-n(+) junction, which was revealed by scanning capacitance microscopy. The lightly doped n-segment can be inverted to p(+) by modula...

متن کامل

In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection.

We report an actuation/detection scheme with a top-down nanoelectromechanical system (NEMS) for frequency shift based sensing applications with outstanding performance. It relies on electrostatic actuation and piezoresistive nanowire gauges for in-plane motion transduction. The process fabrication is fully CMOS (complementary metal-oxide-semiconductor) compatible. The results show a very large ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 24 43  شماره 

صفحات  -

تاریخ انتشار 2013